首页> 外文OA文献 >Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods
【2h】

Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods

机译:基于盒约束Newton方法和maTLaB的矩阵缩放和平衡   内点法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study matrix scaling and balancing, which are fundamentalproblems in scientific computing, with a long line of work on them that datesback to the 1960s. We provide algorithms for both these problems that, ignoringlogarithmic factors involving the dimension of the input matrix and the size ofits entries, both run in time $\widetilde{O}\left(m\log \kappa \log^2(1/\epsilon)\right)$ where $\epsilon$ is the amount of error we are willing totolerate. Here, $\kappa$ represents the ratio between the largest and thesmallest entries of the optimal scalings. This implies that our algorithms runin nearly-linear time whenever $\kappa$ is quasi-polynomial, which includes, inparticular, the case of strictly positive matrices. We complement our resultsby providing a separate algorithm that uses an interior-point method and runsin time $\widetilde{O}(m^{3/2} \log (1/\epsilon))$. In order to establish these results, we develop a new second-orderoptimization framework that enables us to treat both problems in a unified andprincipled manner. This framework identifies a certain generalization of linearsystem solving that we can use to efficiently minimize a broad class offunctions, which we call second-order robust. We then show that in the contextof the specific functions capturing matrix scaling and balancing, we canleverage and generalize the work on Laplacian system solving to make thealgorithms obtained via this framework very efficient.
机译:在本文中,我们研究矩阵缩放和平衡,这是科学计算中的基本问题,有关矩阵缩放和平衡的工作可以追溯到1960年代。我们提供了针对这两个问题的算法,这些算法忽略了涉及输入矩阵维数和其条目大小的对数因子,均在时间$ \ widetilde {O} \ left(m \ log \ kappa \ log ^ 2(1 / \ epsilon)\ right)$,其中$ \ epsilon $是我们愿意容忍的错误量。在此,$ \ kappa $表示最佳缩放比例的最大条目与最小条目之间的比率。这意味着只要$ \ kappa $是准多项式,我们的算法就会在几乎线性的时间内运行,尤其是包括严格正矩阵的情况。我们通过提供使用内点方法并在时间$ \ widetilde {O}(m ^ {3/2} \ log(1 / \ epsilon))$中运行的单独算法来补充我们的结果。为了建立这些结果,我们开发了一个新的二阶优化框架,该框架使我们能够以统一且有原则的方式处理这两个问题。该框架确定了线性系统求解的某种概括,我们可以用来有效地最小化广泛的功能类别,我们称其为二阶鲁棒性。然后,我们表明,在捕获矩阵缩放和平衡的特定功能的背景下,我们可以对Laplacian系统求解的工作进行综合和推广,以使通过此框架获得的算法非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号